

DEPARTMENT OF SCIENCE

COURSE OUTLINE – FALL 2023 BI1070 A2 – INTRODUCTION TO CELL BIOLOGY 3 (3-1-3) 105 HOURS FOR 15 WEEKS

Northwestern Polytechnic acknowledges that our campuses are located on Treaty 8 territory, the ancestral and present-day home to many diverse First Nations, Metis, and Inuit people. We are grateful to work, live and learn on the traditional territory of Duncan's First Nation, Horse Lake First Nation and Sturgeon Lake Cree Nation, who are the original caretakers of this land.

We acknowledge the history of this land and we are thankful for the opportunity to walk together in friendship, where we will encourage and promote positive change for present and future generations.

INSTRUCTOR: Dr. Shauna Henley, **PHONE:** 780-539-2439

PhD

OFFICE: J215 **E-MAIL:** SHenley@nwpolytech.ca

OFFICE

HOURS: As posted on office door.

CALENDAR DESCRIPTION: All life functions are based on cells, and this course will provide an introduction to cell structure and function. Major topics will include the origin of life, the development of prokaryotic and eukaryotic cell lineage, energy conversions, the compartmentalization of biochemical functions within a cell and communication from cell to cell. The genetic control of cell activities is examined through methods of molecular genetic analysis and their application in genetic engineering and biotechnology.

PREREQUISITE(S)/COREQUISITE: Biology 30 and Chemistry 30

REQUIRED TEXT/RESOURCE MATERIALS:

- 1. "Biology" by Campbell *et al.* (2nd (2018) or 3rd (2020) Canadian Edition), Benjamin Cummings Publishing Company.
- 2. University of Alberta, Biology 1070 Laboratory Manual 2023/2024.

DELIVERY MODE(S):

Lectures – Tues & Thurs, 8:30 – 9:50 Labs – L2 Tues, 2:30 – 5:20 L1 Fri, 2:30 – 5:20 Seminars – S1 Mon, 11:30 – 12:20 S2 Fri, 10:00 – 10:50

***Note: recording of lectures will not be permitted

LEARNING OUTCOMES:

- 1. To gain an understanding of the structures and functions of basic components of prokaryotic and eukaryotic cells.
- 2. To gain a knowledge of the cellular components underlying cell movement and cell division.
- 3. To understand the flow of energy and information in cells and apply this knowledge to cell biology.
- 4. To develop the ability to design, analyze and report the findings of scientific experiments.
- 5. To foster critical thinking skills.

TRANSFERABILITY:

Please consult the Alberta Transfer Guide for more information. You may check to ensure the transferability of this course at the Alberta Transfer Guide main page http://www.transferalberta.ca.

** Grade of D or D+ may not be acceptable for transfer to other post-secondary institutions. Students are cautioned that it is their responsibility to contact the receiving institutions to ensure transferability

EVALUATIONS: Midterm Exam – 20% Final exam – 35% Laboratory – 35% Seminar – 10%

The midterm exam will be held in class on **Thursday, October 12th**. The final exam will be cumulative and will take place during the scheduled exam period. Failure to write the

midterm or exam will result in a grade of zero unless appropriate documentation is provided.

GRADING CRITERIA: Please note that most universities will not accept your course for transfer credit **IF** your grade is **less than C-**.

Alpha Grade	4-point	Percentage	Alpha	4-point	Percentage
	Equivalent	Guidelines	Grade	Equivalent	Guidelines
A+	4.0	90-100	C+	2.3	67-69
A	4.0	85-89	С	2.0	63-66
A-	3.7	80-84	C-	1.7	60-62
B+	3.3	77-79	D+	1.3	55-59
В	3.0	73-76	D	1.0	50-54
B-	2.7	70-72	F	0.0	00-49

COURSE SCHEDULE:

Topics		Required Text Readings (pages)			
		2 nd edition	3 rd edition		
1.	Introduction to BI 1070				
2.	Chemistry Review	32-45, 63-95	32-45, 63-93		
3.	Classification of Organisms	11-12, 598-600,	11-12, 602-604,		
		614-622	617-624		
4.	Cell Membranes	136-151	136-151		
5.	Prokaryotic Cell Structure	603-609	607-613		
6.	Cell structure – Organelles	108-122	107-123		
7.	Cytoskeleton and Molecular Motors	123-129	123-127		
8.	Cell walls and Extracellular Matrix	129-132	128-131		
9.	Biological Order and Energy	154-172	155-173		
10.	Glycolysis & Anaerobic Metabolism	175-181, 191-193	176-183,192-94		
11.	Citric Acid Cycle (Kreb's Cycle)	182-185	183-185		
12.	Electron Transport Systems	185-191	186-191		
13.	Chloroplasts and Photosynthesis	198-208	199-208		
14.	Photosynthesis - Light Reactions	208-212	208-213		
15.	Calvin Cycle and Photorespiration	212-218	213-219		
16.	Bacterial Cell Growth	251-252, 608-612	254-255, 612-15		
17.	Cell Division, Mitosis, Meiosis	243-251, 253-260	246-254, 256-63		
		268-278	272-280		
18.	DNA Chemistry	329-335	334-340		
19.	The Eukaryotic Nucleus	345-348	350-353		
20.	DNA Replication	335-345	340-349		
21.	Genes, mRNA and Proteins	351-358	355-362		
22.	Transcription and RNA Processing	358-363	362-367		
23.	Regulation of Transcription	380-394	385-398		

24. Translation 363-376
 25. Viruses, Phages, Viroids, and Prions 414-431
 367-379
 419-436

STUDENT RESPONSIBILITIES: Students are expected to attend <u>all</u> classes, seminars and laboratory sessions. All assignments must be completed in full and handed in by the date specified.

STATEMENT ON ACADEMIC MISCONDUCT:

Academic Misconduct will not be tolerated. For a more precise definition of academic misconduct and its consequences, refer to the Student Rights and Responsibilities policy available at: https://www.nwpolytech.ca/about/administration/policies/index.html

^{**}Note: all Academic and Administrative policies are available on the same page.