

DEPARTMENT OF SCIENCE

COURSE OUTLINE – WINTER 2019 BI2210 (A3) – MECHANISMS OF EVOLUTION – 3 (3-0-0), 45 hours

INSTRUCTOR: Dr. Jessie Zgurski **PHONE:** 780-539-2863 (Office)

780-903-6313 (Cell)

OFFICE: J221 **E-MAIL:** JZgurski@gprc.ab.ca

OFFICE HOURS: Mon/Tues/Thurs 1:00 – 5:00 PM

CALENDAR DESCRIPTION: Discusses the major features of the evolutionary process, including the fossil record, basic population genetics, variation, natural selection, adaptation and speciation.

PREREQUISITE(S)/COREQUISITE: BI1070 and BI1080.

REQUIRED TEXT/RESOURCE MATERIALS:

None; Required readings will be placed on Moodle.

DELIVERY MODE: Lectures – Wed/Fri 1:00 – 2:20 PM

COURSE OBJECTIVES: Upon completion of this course, the student should:

- Appreciate the role and importance of evolutionary biology within modern biology and within science;
- Understand the different lines of evidence for evolution as well as the areas where more research is needed;
- Understand the various modes of evolution and the mechanisms by which they occur; and
- Read scientific papers in evolutionary biology with a good level of comprehension.

LEARNING OUTCOMES:

By the end of the course, students should be able to:

- 1. Describe the history and development of evolutionary thought.
- 2. List and describe evidence for evolution from difference fields of study, including paleontology, genetics, ecology, and developmental biology.
- 3. Describe the mechanisms by which evolution occurs, and explain the potential effects of mutation, migration, genetic drift, non-random mating, and natural selection on the genetics of a population.
- 4. Explain the methodologies used to reconstruct phylogenetic trees, and use freely-available software to reconstruct a phylogenetic tree from DNA sequence data.
- 5. Describe the processes and mechanisms that lead to speciation.
- 6. Explain the process of sexual selection and describe examples of how it has shaped the morphology and behavior of different animal species.

TRANSFERABILITY:

*Please consult the Alberta Transfer Guide for more information (www.albertatransfer.com)

** Grade of D or D+ may not be acceptable for transfer to other post-secondary institutions. Students are cautioned that it is their responsibility to contact the receiving institutions to ensure transferability

EVALUATIONS: Midterm – 25% (February 27)

Final exam – 30% (Date TBA)

Phylogenetics Assignment – 5% (January 25)

Population Genetics Assignment – 5% (February 15)

Speciation Assignment – 10% (March 15)

Research Paper – 15% (April 3)

Participation and Attendance – 10%

The final exam will take place during the scheduled exam period.

GRADING CRITERIA:

Please note that most universities will not accept your course for transfer credit if your grade is less than C-. Do not get less than a "C-" if you plan to transfer to a university.

Alpha Grade	4-point	Percentage	Alpha	4-point	Percentage
	Equivalent	Guidelines	Grade	Equivalent	Guidelines
A+	4.0	90-100	C+	2.3	67-69
Α	4.0	85-89	С	2.0	63-66
A-	3.7	80-84	C-	1.7	60-62
B+	3.3	77-79	D+	1.3	55-59
В	3.0	73-76	D	1.0	50-54
B-	2.7	70-72	F	0.0	00-49

COURSE SCHEDULE:

Topics

- Introduction to BI2210.
- The history and development of modern evolutionary thought.
 - Evolutionary thinking before Darwin.
 - Darwin's Theory: Evolution via Natural Selection.
 - The Evolutionary Synthesis
 - Fundamental principles of biological evolution.
- Taxonomic practice, phylogenies and tree-thinking.

Assignment: Inferring Phylogenies from Molecular Data: 5% (Jan 25)

- Natural Selection and Adaptations
 - Observing and studying adaptive evolution.
 - What not to expect of natural selection.
- How Evolution Occurs:
 - The Raw Material for Selection: Mutation and Genetic Variation
 - Genetical Theory of Natural Selection
 - Phenotypic Evolution
 - Genetic Drift
 - Gene Flow and Dispersal

Assignment: Population Genetics Questions 5% (Feb 15)

- Species and Speciation
 - Species concepts
 - Reproductive Isolation and the Geography of Speciation

Assignment: Speciation (Mar 15)

Sex and Sexual Selection

- Evolution of sexual reproduction
- Why are (usually) males sexually selected?
- Sexual selection by male-male competition and female choice.
- Mating systems and strategies
- Life history and parental care
 - Life history evolution.
 - Senescence.
- Cooperation and conflict
 - Cooperation and aggression.
 - Kin selection.
- Evolution and Development
 - Gene regulation
 - Hox genes
- Macroevolutionary patterns

STUDENT RESPONSIBILITIES: Students are expected to attend all classes and complete all assigned readings. Failure to write an exam will result in a grade of zero unless appropriate documentation is provided.

STATEMENT ON PLAGIARISM AND CHEATING:

Cheating and plagiarism will not be tolerated and there will be penalties. For a more precise definition of plagiarism and its consequences, refer to the Student Conduct section of the College Admission Guide at http://www.gprc.ab.ca/programs/calendar/ or the College Policy on Student Misconduct: Plagiarism and Cheating at www.gprc.ab.ca/about/administration/policies/**

^{**}Note: all Academic and Administrative policies are available on the same page.