

DEPARTMENT OF SCIENCE

COURSE OUTLINE: CH2610 A3, Organic Chemistry I, Winter 2015

INSTRUCTOR:	Dr. John P. Sloan	PHONE:	780-539-2004
OFFICE:	Office # J207	E-MAIL:	jsloan@gprc.ab.ca

OFFICE HOURS: Mon & Wed 10:00 – 11:30 & 13:00 – 14:30; Thursday 14:30 – 16:00.

PREREQUISITE(S)/COREQUISITE: CH1010 or CH1030

REQUIRED TEXT/RESOURCE MATERIALS:

- 1. Solomons, T.W.G., C.B. Fryhle, *S.A. Snyder, Organic Chemistry*, 11th Edition, Wiley, 2014, including access to the WileyPlus web site at: https://edugen.wiley.com/edugen/secure/index.uni.
- 2. A Three Ring Binder to Hold: Sloan, J.P., *Organic Chemistry Experiments, Chemistry 2610/2630*, Grande Prairie Regional College, 2014/2015.
- **3.** Molecular Models are highly recommended, namely: Molecular Model Set for Organic Chemistry, Prentice Hall.
- 4. Study Guide and Solutions Manual (978-1-118-14790-0) is an optional item; namely:
 - 4.1 The Study Guide and Solutions Manual for Organic Chemistry, 11th Edition, authored by Jon Antilla, University of South Florida, Robert Johnson, Xavier University, Craig Fryhle, Graham Solomons, and Scott Snyder.
 - Note: Solomons et al, Organic Chemistry, 11th Edition including access to WileyPlus; safety glasses; and lab coats are available at the College Bookstore. *Organic Chemistry Experiments*, by J.P. Sloan, will be given as hand outs in advance of each lab period. These are to be inserted in a three ring binder. Use of Molecular Models is encouraged.

CALENDAR DESCRIPTION: CH2610 3(3-1-3)UT, 105 Hours, Organic Chemistry I

The correlation of structure and bonding in carbon compounds with the physical properties and chemical reactivity of organic molecules. Discussion will be based on functional groups with emphasis on hydrocarbons and derivatives that contain halogens, oxygen, sulphur and the hydroxyl group. Introduction to stereochemistry, three dimensional structure, reaction mechanisms, especially addition to double bonds, nucleophilic substitution and elimination reactions, and methods of structure determination. The study covers the functional group chemistry of alkanes, alkenes, alkynes, alcohols, ethers and sulfides.

Prerequisites: CH1010 or CH1030

Notes: Credit will be granted for only one of CH1610 or CH2610

Transfer: UA, UC, UL, AU, AF, CU, CUC, KUC

CREDIT/CONTACT HOURS: CH2610 3(3-1-3)UT, 105 Hours, Organic Chemistry I

DELIVERY MODE(S): Organic Chemistry I, consisting of CH2610 A3, S1, S2, L1, and L2 will be delivered in Lecture, Tutorial and Laboratory Components.

OBJECTIVES (OPTIONAL): The objective of Organic Chemistry I is for students to become proficient in their understanding of the theory of Organic Chemistry as outlined in the Calendar Description and in this Course Outline.

TRANSFERABILITY: ALBERTA TRANSFER CREDIT

(Ref: Alberta Council of Admissions and Transfers, updated July 2, 2014)

GPRC:	CH 2610	(3)	CH 2630	(3)
U of Alberta:		(3) or AUCHE 250 (3)	CHEM 263	(3) or AUCHE 252 (3)
U of Calgary:	CHEM 351		CHEM 353	(3)
U of Lethbridge:	CHEM 2500) (3)	CHEM 2600	(3)
Grant MacEwan U:	CHEM 261	(3)	CHEM 263	(3)
Athabasca U:	CHEM 350	(3)	CHEM 360	(3)
Canadian UC:	CHEM 241	(4)	CHEM 242	(4)
Concordia UC:	CHEM 261	(3)	CHEM 263	(3)
King's UC:	CHEM 3xx	(3)	CHEM 351	(3)

** Grade of D or D+ may not be acceptable for transfer to other post-secondary institutions. Students are cautioned that it is their responsibility to contact the receiving institutions to ensure transferability

GRADING CRITERIA:

The Grades will be based on the alpha grading system. The Registrar's Office will convert alpha grades to four-point equivalence for the calculation of grade point averages. Alpha grades, 4-point equivalence, and grade descriptors are as follows:

Alpha Grade	4-Point Equivalence	Percentage Guidelines	Descriptor
A^+	4.0	90 - 100	Excellent
А	4.0	85 - 90	
A-	3.7	80 - 84	Very Good
B+	3.3	77 – 79	First Class Standing
В	3.0	73 – 76	Good
B-	2.7	70 - 72	
C+	2.3	67 – 69	Satisfactory
С	2.0	63 – 66	
C-	1.7	60 - 62	
D+	1.3	55 – 59	Poor*
D	1.0	50 - 54	Minimal Pass*
F	0.0	0 - 49	Failure
WF	0.0	0	Fail, withdraw after the
			deadline

* Grades of D and D+ may not be acceptable to other post-secondary institutions. Students are cautioned that it is their responsibility to contact the receiving institution to ensure transferability.

EVALUATIONS:

Examination Schedule and Composition of the Final Grade:

1.	Midterm Exam # 1, Friday February 13	20%
2.	Midterm Exam # 2, Friday March 13	20%
2.	Final Exam to be scheduled between April ~15 – 27	35%
3.	Laboratory	20%
4.	Tutorial Grading Component	5%
		100%

Notes:

- 1. The Mid-Term Exams will be of 1.5 hours duration and the Final Exam will be of 3 hours duration.
- 2. Between 5 and 15% of exam content will be taken from a combination of weekly assignments, Wiley Plus, and questions in the organic chemistry textbook by Solomons and Fryhle.
- 5. A pass grade is essential for the Laboratory Component.
- 6. The Tutorial Grading Component will contribute to 5% of the final grade and will consist of ten assignments with ten questions per assignment.
- 5. Assistance with assignments will be given upon request.

STUDENT RESPONSIBILITIES:

Students are responsible for regular attendance in Lecture, Laboratory, and Tutorial Components of the Organic Chemistry I course. They are also responsible for submission of assignments and laboratory reports according to the course policy; and for attending the exams according to the Exam Schedule.

STATEMENT ON PLAGIARISM AND CHEATING:

Refer to the Student Conduct section of the College Admission Guide at http://www.gprc.ab.ca/programs/calendar/ or the College Policy on Student Misconduct: Plagiarism and Cheating at www.gprc.ab.ca/programs/calendar/ or the College Policy on Student Misconduct: Plagiarism and Cheating at www.gprc.ab.ca/programs/calendar/ or the College Policy on Student Misconduct: Plagiarism and Cheating at www.gprc.ab.ca/about/administration/policies/**

**Note: all Academic and Administrative policies are available on the same page.

COURSE SCHEDULE/TENTATIVE TIMELINE:

The Course Schedule consists of Lecture, Laboratory and Tutorial Components. A brief description of the components is as follows:

Lecture Component:

A study of the fundamental principles of the chemistry of carbon compounds. The study is based on a reaction mechanism approach to the functional group chemistry of alkanes, alkenes, alkynes, cycloalkanes, alkyl halides, alcohols and ethers. Topics include: structure and bonding; physical properties; acidity and basicity; conformations of molecules; stereochemistry; addition, elimination and substitution reactions; structure-reactivity relationships; and introduction to methods for structure determination.

A representative selection of molecules found in agricultural, biological, environmental, industrial, medical, and pharmatheutical applications of organic chemistry will be discussed, e.g., molecules found in agrochemicals, fibres, food additives, perfumes, polymers, and prescription drugs.

Laboratory Component:

Laboratory Techniques in organic chemistry; preparation of some organic compounds, and; methods of qualitative organic analysis.

Tutorial Component:

Problem solving and discussion sessions with weekly problem sets. Regular assignments will be given and marked. There will be ten assignments with each assignment consisting of ten questions.

Detailed solutions to the, "Ten-Question-Assignments", will be posted on Moodle after the due dates for the assignments.

The WileyPlus web site for additional resources is: https://edugen.wiley.com/edugen/secure/index.uni

The Course Schedule is:

1.	Lectures, Time and Place:	CH2610 A3 T, R	11:30 - 12:50 in L123
2.	Laboratory Component, Time and Place:		14:30 - 17:20 in J116 14:30 - 17:20 in J116
3.	Tutorial Component, Time and Place:		8:30 - 9:20 in J204 10:00 - 10:50 in J229

4. Office Hours: Individual and group assistance will normally be available in office J207 during regular college business hours outside of formal class lecture, laboratory and tutorial hours.

TIMETABLE: The Timetable for CH 2610 A3, Organic Chemistry I, is as follows:

CH2610 A3, Organic Chemistry I: Schedule for Reading, Studying and Practice Problems

References are to T.W.G. Solomons, C.B. Fryhle and S.A. Snyder, *Organic Chemistry*, 11th Edition, Wiley, 2014.

WINTER SEMESTER

Weeks of

- Jan 6: THE BASICS: Bonding and Molecular Structure: Read and Study Chapter 1, including the Concept Map on page 54.
- Practice Problems: You are encouraged to work all of the in-chapter problems, and you are required to complete the assignments given in-seminar-class, and you may complete additional organic chemistry problems using WileyPlus. Routinely doing problems in organic chemistry leads to understanding of the theory, and to earning good grades in organic chemistry.

In the words of Solomons and Fryhle:

"One way to check your progress is to work each of the in-chapter problems when you come to it. These problems have been written just for this purpose and are designed to help you decide whether or not you understand the material that has just been explained."

And, in the words of Wade:

"It's easy to fool yourself into thinking you understand organic chemistry when you actually do not. As you read through this book, all the facts and ideas may make sense, yet you have not learned to combine and use those facts and ideas. An examination is a painful time to learn that you do not really understand the material.

The best way to understand organic chemistry is to use it. You will certainly need to read and reread all the material in the chapter, but this level of understanding is just the beginning. Problems are provided so you can work with the ideas, applying them to new compounds and new reactions that you have never seen before. By working problems, you force yourself to use the material and fill in the gaps in your understanding. You also increase your level of self-confidence and your ability to do well on exams".

Problems/Page #'s In-Chapter 1.1 to 1.28

0	1	
49	End of Chapter	1.29 to 1.50

- 52 Challenge Problems 1.51 to 1.56
- 53 Learning Group Problems 1 to 8

Week of Jan 13: FAMILIES of CARBON COMPOUNDS: Functional Groups, Intermolecular Forces, and Infrared (IR) Spectroscopy. Read and Study Chapter 2, including the Concept Map on page 103.

Problems/Page #'s: In-Chapter	2.1 to 2.28
-------------------------------	-------------

- 99
 End of Chapter
 2.29 to 2.53
- 102 Challenge Problems 2.54 to 2.57
- 102 Learning Group Problems 1 to 8

Week of Jan 20: AN INTRODUCTION TO ORGANIC REACTIONS and THEIR MECHANISMS: ACIDS AND BASES IN ORGANIC CHEMISTRY. Read & Study Chapter 3, including the Concept Map on page 141.

Problems/Page #'s: In-Chapter 3.1 to 3.17

- 137
 End of Chapter
 3.18 to 3.40
- 139 Challenge Problems 3.41 to 3.45
- 140 Learning Group Problems 1 to 4

Week of Jan 27: NOMENCLATURE and CONFORMATIONS of ALKANES and CYCLOALKANES. Read and Study Chapter 4, and read the Concept Map on page 190.

Problems/Page #'s: In-Chapter	4.1 to 4.22
-------------------------------	-------------

- 186
 End of Chapter
 4.23 to 4.46
- 188 Challenge Problems 4.47 to 4.51
- 189 Learning Group Problems 1 to 4
- Week of Feb 3: STEREOCHEMISTRY: CHIRAL MOLECULES. Read & Study Chapter 5, and read the Concept Map on page 238.

Problems/Page #'s: In-Chapter	5.1 to 5.32
-------------------------------	-------------

- 234 End of Chapter 5.33 to 5.51
- 237 Challenge Problems 5.52 to 5.55
- 235 Learning Group Problems 1 to 3

Additional Problems - The WileyPlus accompanying the text book includes a set of computer molecular model stereochemistry exercises that are keyed to the text

Weeks of Feb 10: IONIC REACTIONS: Nucleophilic Substitution and Elimination Reactions of Alkyl Halides. Read and Study Chapter 6, and read the, "Summary and Review Tools – Mechanism Review: Substitution versus Elimination", on page 290.

Problems/Page #'	s: In-Chapter	6.1 to 6.19
284	End of Chapter	6.20 to 6.47
288	Challenge Problem	s 6.48 to 6.56
290	Learning Group Pre	oblems 1 to 2

Week of Feb 16-20: No Classes: Family Day is Feb 16 and Winter Break is Feb 17 - 20.

Week of Feb 24: ALKENES AND ALKYNES I: Properties and Synthesis. Elimination Reactions of Alkyl Halides. Read and Study Chapter 7, read Summary and Review Tools, and the Concept Map on pages 335 and 336.

Problems/Page #/	s: In-Chapter	7.1 to 7.24
329	End of Chapter	7.25 to 7.49
332	Challenge Problems	7.50 to 7.55
333	Learning Group Prob	lems 1 to 5.

Week of March 3: ALKENES & ALKYNES II: Addition Reactions. Read & Study Chapter 8, and read, "Summary and Review Tools; Summary of Alkene Addition Reactions, and Synthetic Connections of Alkynes and Alkenes II", on page 389 and 390.

Problems/Page #	's: In-Chapter	8.1 to 8.25
383	End of Chapter	8.26 to 8.65
387	Challenge Problems	8.66 to 8.67
388	Learning Group Probl	ems 1 to 4

Week of March 10: RADICAL REACTIONS. Read and Study Chapter 10, and read the, "Concept Map – Mechanism Review of Radical Reactions", on page 497.

Problems/Page #'	s: In-Chapter	10.1 to 10.17
492	End of Chapter	10.20 to 10.33
495	Challenge Problems	10.34 to 10.41
496	Learning Group Problems 1 to 2	

Week of March 17: ALCOHOLS & ETHERS: Synthesis & Reactions. Read & Study Chapter 11, and read the, "Summary and Review Tools – Some Synthetic Connections of Alkenes, Alkynes, Alcohols, Alkyl Halides and Ethers", on page 541.

Problems/Page #'s: In-Chapter	11.1 to 11.24
-------------------------------	---------------

- 535
 End of Chapter
 11.25 to 11.53
- 539Challenge Problems11.54 to 11.58
- 540 Learning Group Problems 1 to 3

Week of March 24: ALCOHOLS FROM CARBONYL COMPOUNDS: OXIDATION-REDUCTION AND ORGANOMETALLIC COMPOUNDS.

Read and Study Chapter 12, and read the, "Summary and Review Tools – Synthetic Connections of Alcohols and Carbonyl Compounds", on pages 879 and 880.

Problems/Page #'s: In-Chapter		12.1 to 12.10
572	End of Chapter	12.11 to 12.38
577	Challenge Problems	12.39 to 12.41

577 Learning Group Problem

Week of March 31: CONJUGATED UNSATURATED SYSTEMS. Read and Study Chapter 13, and read the, "Concept Map", on page 625.

Problems/Page #	's: In-Chapter	13.1 to 13.17
618	End of Chapter	13.18 to 13.50
623	Challenge Problems	13.51 to 13.54
624	Learning Group Problems 1 to 2	

Weeks of April 7 & April 14: Review Class, e.g. review of a Practice Final Exam.

TIMETABLE: The Timetable for CH 2610 A3, Organic Chemistry I, is as follows:

CH2610 A3, Organic Chemistry I: Schedule for Reading, Studying and Practice Problems

References are to T.W.G. Solomons and C.B. Fryhle, Organic Chemistry, 10th Edition, Wiley, 2011.

WINTER SEMESTER

Weeks of

Jan 6: THE BASICS: Bonding and Molecular Structure: Read and Study Chapter 1.

Practice Problems: You are encouraged to work all of the in-chapter problems, and you are required to complete the assignments given in-seminar-class, and you may complete additional organic chemistry problems using WileyPlus. Routinely doing problems in organic chemistry leads to understanding of the theory, and good grades in organic chemistry.

In the words of Solomons and Fryhle:

"One way to check your progress is to work each of the in-chapter problems when you come to it. These problems have been written just for this purpose and are designed to help you decide whether or not you understand the material that has just been explained."

And, in the words of Wade:

"It's easy to fool yourself into thinking you understand organic chemistry when you actually do not. As you read through this book, all the facts and ideas may make sense, yet you have not learned to combine and use those facts and ideas. An examination is a painful time to learn that you do not really understand the material.

The best way to understand organic chemistry is to use it. You will certainly need to read and reread all the material in the chapter, but this level of understanding is just the beginning. Problems are provided so you can work with the ideas, applying them to new compounds and new reactions that you have never seen before. By working problems, you force yourself to use the material and fill in the gaps in your understanding. You also increase your level of self-confidence and your ability to do well on exams".

Problems/P	age #'s In-Chapter	1.1 to 1.25
47	End of Chapter	1.26 to 1.50

- 50 Challenge Problems 1.46 to 1.50
- 51 Learning Group Problems 1 to 8

Week of Jan 13: FAMILIES of CARBON COMPOUNDS: Functional Groups, Intermolecular Forces, and Infrared (IR) Spectroscopy. Read and Study Chapter 2.

Problems/Page	e #'s: In-Chapter	2.1 to 2.28
93	End of Chapter	2.29 to 2.54

- 96 Challenge Problems 2.55 to 2.58
- 96 Learning Group Problems 1 to 8

Week of Jan 20: AN INTRODUCTION TO ORGANIC REACTIONS and THEIR MECHANISMS: ACIDS AND BASES IN ORGANIC CHEMISTRY. Read & Study Chapter 3.

Problems/Page #'s: In-Chapter 3.1 to 3.17

132 End of Chapter 3.18 to 3.40

134 Challenge Problems 3.41 to 3.45

135 Learning Group Problems 1 to 4

Week of Jan 27: NOMENCLATURE AND CONFORMATIONS OF ALKANES and CYCLOALKANES. Read and Study Chapter 4

Problems/Page #'s: In-Chapter 4.1 to 4.22

- 182 End of Chapter 4.23 to 4.46
- 184 Challenge Problems 4.47 to 4.51
- 180 Learning Group Problems 1 to 4

Week of Feb 3: STEREOCHEMISTRY: CHIRAL MOLECULES. Read & Study Chapter 5.

Problems/Page #'s: In-Chapter 5.1 to 5.32

225 End of Chapter 5.33 to 5.49

228 Challenge Problems 5.50 to 5.53

228 Learning Group Problems 1 to 3

Additional Problems - The WileyPlus accompanying the text book includes a set of computer molecular model stereochemistry exercises that are keyed to the text

Weeks of Feb 10: IONIC REACTIONS: Nucleophilic Substitution and Elimination Reactions of Alkyl Halides. Read and Study Chapter 6.

Problems/Page #'	s: In-Chapter	6.1 to 6.19
277	End of Chapter	6.20 to 6.47
282	Challenge Problem	ns 6.48 to 6.56
283	Learning Group Pr	oblems 1 to 2

Week of Feb 16-20: No Classes: Family Day is Feb 16 and Winter Break is Feb 17 - 20.

Week of Feb 24: ALKENES AND ALKYNES I: Properties and Synthesis. Elimination Reactions of Alkyl Halides. Read and Study Chapter 7.

Problems/Page #/	s: In-Chapter	7.1 to 7.24
323	End of Chapter	7.25 to 7.48
327	Challenge Problems	7.49 to 7.54
327	Learning Group Prob	lems 1 to 8

Week of March 3: ALKENES & ALKYNES II: Addition Reactions. Read & Study Chapter 8.

Problems/Page #	's: In-Chapter	8.1 to 8.25
376	End of Chapter	8.26 to 8.65
381	Challenge Problems	8.66 to 8.70
382	Learning Group Proble	ems 1 to 4

Week of March 10: RADICAL REACTIONS. Read and Study Chapter 10.

Problems/Page #'	s: In-Chapter	10.1 to 10.19
496	End of Chapter	10.20 to 10.33
499	Challenge Problems	10.34 to 10.41
400	Learning Group Prob	lems 1 to 2

Week of March 17: ALCOHOLS & ETHERS: Synthesis & Reactions. Read & Study Chapter 11.

Problems/Page #'	s: In-Chapter	11.1 to 11.24
541	End of Chapter	11.25 to 11.53
545	Challenge Problems	11.54 to 11.58
546	Learning Group Prob	lems 1 to 3

Week of March 24: ALCOHOLS FROM CARBONYL COMPOUNDS: OXIDATION-REDUCTION AND ORGANOMETALLIC COMPOUNDS. Read and Study Chapter 12.

Problems/Page #'s: In-Chapter 12.1 to 12.9 576 End of Chapter 12.10 to 12.37

581 Challenge Problems 12.38 to 12.40

582 Learning Group Problem

Week of March 31: CONJUGATED UNSATURATED SYSTEMS. Read and Study Chapter 13.

Problems/Page #'	s: In-Chapter	13.1 to 13.14
624	End of Chapter	13.15 to 13.47
629	Challenge Problems	13.48 to 13.51
630	Learning Group Probl	lems 1 to 2

Weeks of April 7 & April 14: Review Class, e.g. review of a Practice Final Exam.