

### **DEPARTMENT OF SCIENCE**

#### **COURSE OUTLINE – Fall 2021**

# CS2290 - COMPUTER ORGANIZATION AND ARCHITECTURE I - 3 (3-0-3) 90 HOURS

Grande Prairie Regional College respectfully acknowledges that we are located on Treaty 8 territory, the traditional homeland and gathering place for many diverse Indigenous peoples. We are honoured to be on the ancestral lands of the Cree, Dene/Beaver and Métis, whose histories, languages, and cultures continue to influence our vibrant community. We are grateful to have the opportunity to work, learn, and live on this land.

**INSTRUCTOR:** Libero Ficocelli **PHONE:** 780 539 - 2825

**OFFICE:** C424 **E-MAIL:** LFicocelli@gprc.ab.ca

**OFFICE HOURS:** TBA

#### **CALENDAR DESCRIPTION:**

General introduction to number representation, architecture and organization concepts of von Neumann machines, assemble level programming, exception handling, peripheral programming, floating point computations and memory management.

PREREQUISITE(S)/COREQUISITE: CS1150

# REQUIRED TEXT/RESOURCE MATERIALS:

Assembly Language for x86 Processors, 7th Edition (6<sup>th</sup> Edition is acceptable)

By Kip R. Irvine, Pearson Publishing,

ISBN 0-13-376940-2

**DELIVERY Mode:** Onsite face-to-face.

## **COURSE OBJECTIVES:**

- Learn the fundamentals behind program execution
- Understand how a modern CPU works

- Learn how machine code is generated by a compiler
- Understand the interface between software and hardware

#### **LEARNING OUTCOMES:**

- Understand computer data representation
- Know basic processor architecture and memory management
- Be able to write, assemble, and debug Intel Assembler code
- Be able to perform conditional processing and Integer arithmetic, use code libraries,
   code procedures and advanced procedures and use string manipulation rountines
- List the basic components of a modern CPU

### TRANSFERABILITY:

Please consult the Alberta Transfer Guide for more information. You may check to ensure the transferability of this course at the Alberta Transfer Guide main page http://www.transferalberta.ca.

Grade of D or D+ may not be acceptable for transfer to other post-secondary institutions. **Students** are cautioned that it is their responsibility to contact the receiving institutions to ensure transferability.

#### **EVALUATIONS:**

Lab/Homework

Assignments 30% Quizzes 10%

Midterm 25%

Final Exam 35%

## **GRADING CRITERIA:**

| Alpha | 4-point    | Percentage | Alpha | 4-point    | Percentage |
|-------|------------|------------|-------|------------|------------|
| Grade | Equivalent | Guidelines | Grade | Equivalent | Guidelines |
| A+    | 4.0        | 90-100     | C+    | 2.3        | 67-69      |
| A     | 4.0        | 85-89      | С     | 2.0        | 63-66      |
| A-    | 3.7        | 80-84      | C-    | 1.7        | 60-62      |
| B+    | 3.3        | 77-79      | D+    | 1.3        | 55-59      |

| В  | 3.0 | 73-76 | D | 1.0 | 50-54 |
|----|-----|-------|---|-----|-------|
| B- | 2.7 | 70-72 | F | 0.0 | 00-49 |

# **COURSE SCHEDULE/TENTATIVE TIMELINE:**

# **Introduction to Computer Architecture:**

- Microprocessor and computer architecture
- Operations and operands of computer hardware
- Representing instructions

# **Number systems and Arithmetic**

- Signed and Unsigned Numbers
- Addition and Subtraction
- Logical Operations
- Constructing an Arithmetic Logic Unit
- Multiplication and Division
- Floating Point numbers

# 80x86 Assembly

- Overview of 80x86 assembler (segments, registers and organization)
- Program structure
- I/O operations
- Data movement instructions
- Conditionals and Branching instructions
- Arrays
- Macros and Procedures
- Interrupts
- String processing
- Video operations (text and graphics)
- Parameter passing and stack operations

### STUDENT RESPONSIBILITIES:

- The Student must pass the theory/concepts portion of the course in order to qualify for a
  passing grade for the term. In other words, a student must obtain 35 out of a possible 70
  points (from exams/quizzes) before adding the lab assignment marks to compute the final
  grade. If you cannot achieve the required 50% (on exams) then regardless of your lab
  assignment grades, you cannot pass the course.
- No late assignments will be accepted. The student is responsible for
- adhering to all requirements as specified for each assignment.
- When necessary, lab time may be utilized for lecturing on specific Assembly language features. The remainder of the lab time will generally be used as "hands-on" programming time.

## STATEMENT ON PLAGIARISM AND CHEATING:

Cheating and plagiarism will not be tolerated and there will be penalties. For a more precise definition of plagiarism and its consequences, refer to the Student Conduct section of the College Calendar at <a href="http://www.gprc.ab.ca/programs/calendar/">http://www.gprc.ab.ca/programs/calendar/</a> or the College Policy on Student Misconduct: Plagiarism and Cheating at <a href="https://www.gprc.ab.ca/about/administration/policies">https://www.gprc.ab.ca/about/administration/policies</a>

<sup>\*\*</sup>Note: all Academic and Administrative policies are available on the same page.