Dept. of Science \& Technology Grande Prairie Regional College

MI 2650
 General Microbiology (3-0-4)
 3 credits

Course Outline 2006-2007

Philip Johnson B.Sc., M.Sc., Ph.D., M.S.P.H. Office: J224 Telephone: 5392863
e-mail: johnson@gprc.ab.ca

Schedule: \quad Classes - Monday 1130-1250 and Friday 1000-1120 (J229)
Labs - Wednesday 1430-1820 (J130)
Description: This course covers aspects of bacterial physiology such as nutrient uptake, metabolism, extracellular proteins, chemotaxis and differentiation. Symbiotic associations and interaction of microbes with the environment are major topics. Basic principles of industrial microbiology and the use of biotechnology for the production of economically and medically important substances will be covered. Laboratory exercises are designed to compliment the material included in the classes.

Transferability:

Athabasca University
Augustana University College
Concordia University College
University of Alberta
University of Lethbridge
University of Calgary

BIOL 3xx
BIO 274
BIO 2xx
MICRB 265
BIOL 3200
Junior BIOL
(will not get credit for BIOL 231, but MI 2650 acts as pre-req. for CMMB 343)
Text-book: \quad Brock - Biology of Microorganisms (11 ${ }^{\text {th }}$ edition)
MADIGAN \& MARTINKO (2006)
Prentice-Hall Publishers
This text-book is recommended for the course - it is not compulsory. $9^{\text {th }}$ or $10^{\text {th }}$ editions are also very good, however the page numbers and figures will differ. For extra help with the text, Prentice-Hall Publishers have made available a companion web page for the text containing Chapter summaries, self-tests, and other information that you may find useful. The URL address for this web-page is:

http://www.prenhall.com/bookbind/pubbooks/brock2/

The web page for the $10^{\text {th }}$ edition is: http://www.prenhall.com/brock/
Relevant articles and other materials will occassionally be recommended to students. It is strongly recommended that they be read since the information may appear in exams.
A number of alternative textbooks may also be placed on reserve in the GPRC Library, and students are advised to take advantage of their availability.

Text-books on World Wide Web:

Medical Microbiology (4 ${ }^{\text {th }}$ Edition) Editor: Samuel Baron http://129.109.136.65/microbook/toc.html

Microbiology 101 Internet Text (Washington State University) http://www.wsu.edu/~hurlbert/pages/101hmpg.html

Requirements: Lab. Reports15\%

Quizzes 5\%
Mid-term Exam 20\%
Final Lab Exam 20\%
Final Exam 40\%
TOTAL 100\%

In order to successfully complete MI 2650, students must attend ALL laboratory sessions and achieve a mean score of 50% on the Lab Reports, Lab Quizzes and Final Lab Exam. All assignments MUST be handed in by the time and date specified.

Late reports will not be marked!

Many of the Laboratory exercises require that students perform some of the procedures at times other than the scheduled lab period. To do this, prior arrangements must be made with Mr. Rick Scott, the Biology Lab. Technologist. In case of injury, it is preferable that students work with at least one partner when coming into the laboratory outside of scheduled times.

Quizzes in both class and laboratory sessions may be given without any advanced notice to students.

Since participation in lectures, and completion of assignments are important components of this course, students will serve their best interests by regular attendance. Those who chose not to attend must assume whatever risks are involved. In this regard, your attention is directed to the Academic Guidelines of Grande Prairie Regional College.

MI 2650

TOPIC DESCRIPTIONS

It is strongly recommended that students thoroughly review their BI 1070 notes especially in regards to Procaryotic Structure and Metabolism

Approx. \# of Hours	TOPIC
1	Introduction to the course
6	Functional Morphology of bacteria: Definitions and descriptions of microbes. Correlation of cell structure and function. Differentiation of bacteria by cell wall type and key metabolic characteristics. Structural features important in both beneficial and harmful (pathogenic) interactions, motility. Pathogenesis
14	Microbial diversity and environments: Growth patterns in relation to oxygen (its use and toxicity). The major nutritional types with an emphasis on energy and carbon sources. Practical examples of diverse nutritional types: methanogenesis, autotrophs, photosynthetic microbes, extremophiles. Bioremediation, food microbiology, normal flora, symbioses.
1	MID-TERM EXAM: during lecture period (80 minutes)
9	Sensory systems and intercellular communication: Review of transcriptional control systems in bacteria. Role of sigma factors as transcriptional activators. Global regulation. Nitrogen cycling and regulation, symbiotic nitrogen fixation. Chemotaxis. Microbe-microbe signalling (quorum sensing) and plant-microbe interactions (eg. Rhizobium and Agrobacterium spp.).
7	Bacterial growth and control of growth: Effects of temperature, nutrient levels and growth conditions. Analysis of the exponential growth curve, using the growth equation to predict growth rate and cell yield. Control of growth using heat and chemicals (heavy metals, antibiotics). Resistance of bacteria to chemical agents (especially antibiotics)
1	

MI 2650
 Detailed Topic Outline

TOPIC

Introduction and Review

Overview of Microbial Life
Procaryotes vs Eucaryotes
Microbial sizes \& shapes
Functional Morphology
Cell Membrane
Cell walls
\quad Mycobacterium tuberculosis

Pseudopeptidoglycan / S-layer
Wall-less bacteria
Pili and Fimbriae
Sex pili
Fimbriae
Capsules

Appendaged bacteria
Motility

Flagella	$92-95$	$82-87$	$79-82$
Taxes	$97-100$	$87-90$	$83-85$
Gliding	$95-97$	86	$497 ; 526$
Spirochaetes	$407-411$	$434-435$	$537-538$
Pathogens and Normal Flora	$703-710$	$730-748$	-796

Microbial Diversity

Oxygen Requirements	160-164	161-165	158-161
ETC and chemiosmosis	123-126	125-128	123-126
Nutritional Diversity			
Carbon and Energy sources	28-29, 127-130	28-29; 130-131	
Chemoheterotrophs			
Bioremediation	577-579, 651-653	674-676; 597-598	$\begin{gathered} \text { 696-698; 632- } \\ 634 \end{gathered}$
Industrial Fermentations	375-379	400-404	504-507
Sulphate-reducing bacteria	371-373	396-399	498-502
Chemoautotrophs			
Sulphur-oxidizing bacteria	337-340, 550-553	360-363; 568-571	$\begin{gathered} 595-598 ; 670- \\ 675 \end{gathered}$
Hydrothermal vents	628-631	647-651	670-675
Acidic habitats	157-158		
Iron $\left(\mathrm{Fe}^{2+}\right)$-oxidizing bacteria	337-340, 553-555	571-573	462-464
Acid mine drainage	644-647	666-669	598-601
Bioleaching	647-649	669-672	689-694
Methanogens	$\begin{aligned} & 426-430,564- \\ & 568,634-637 \end{aligned}$	$\begin{gathered} 453-455 ; 583- \\ 587 ; 654-658 \end{gathered}$	$\begin{gathered} 553-556 ; 613- \\ 617 ; 677-681 \end{gathered}$
The Rumen	637-640	658-662	681-685
Environmental Extremes			
Salinity	158-160, 422-426	159-161; 448-452	$\begin{gathered} 156-158 ; 548- \\ 552 \end{gathered}$
Temperature	150-157	151-157	147-154
Applications			

Environmental Sensing and Response

Bacterial Gene Regulation

Promoters and Sigma factors	$188-191$	$187-192$	$191-194$
Positive and Negative Control	$210-221$	$211-220$	$213-223$
Quorum Sensing	$221-222$	224	228
Bioluminescense	$355-357$	$379-381$	$482-484$
Agrobacterium tumefasciens	$659-660$	$683-685$	$706-709$
Signal transduction	$224-226$	$224-226$	$230-231$
Nitrogen Fixation			
Nitrogen Cycle	$641-642$	$662-664$	$685-686$
Nitrogen fixation	$586-591$	$606-611$	$634-639$
Rhizobium-legume symbiosis	$661-667$	$685-691$	$709-717$
Population Growth Kinetics	$136-137$		$136-145$
Growth	$140-142$	$142-144$	
Calculating exponential growth	$142-144$	$144-145$	
Population Growth Curve			
Control of Microbial Growth	$671-673$	$95-100$	$91-95$
Heat	$673-675$	$719-723$	$765-769$
Irradiation	$677-688$	$87-91$	$69-698$
Chemical methods			
Bacterial endospores	Microbial Resistance to Antibiotics		

> MI 2650
> Laboratory Exercises
> Fall Semester 2005-06

Exercise 1: Microscopy

a) Use of a light microscope including oil immersion
b) Observation of various microorganisms (prepared slides) to observe Gram stain reaction, cell shape, cell arrangement:

Staphylococcus aureus
Streptococcus sp.
Bacillus anthracis
Branhamella catarrhalis
Spirillum serpens
Escherichia coli
Streptomyces sp.
Saccharomyces cerevisiae
c) Demonstrations of:

Acid-fast stain (Mycobacterium sp.)
Endospore stain (Bacillus subtilis)
Flagella stain (Pseudomonas aeruginosa)
Capsule stain (Streptococcus mutans)
d) Demonstrations of:

Phase Contrast microscopy
Dark Field microscopy
Differential Interference Contrast Microscopy
Transmission Electron micrographs
Scanning Electron micrographs

Exercise 2: Isolation of bacteria from a mixture

a) Preparation of Streak Plates from mixture of three bacterial species.
b) Preparation of Streak Plates from pure cultures provided.
c) Preparation of Gram Stains of samples from mixture.
d) Distinguish Gram positive and Gram negative organisms.
e) Prepare pure cultures from mixture plate after 48 hours incubation.
f) Describe characteristics of colonies
g) Prepare Gram stain on prepared pure cultures.
h) Perform Catalase Test and Oxidase Test.

Exercise 3: Identification of Gram positive and Gram negative bacteria isolated in Ex. 2
a) Perform following test on the Gram positive organism:

Catalase test
Bile-esculin test
Blood haemolysis
b) Perform following tests on the Gram negative organism:

Oxidase test
ONPG test

Urease test
DMCA test
c) Prepare streak plates of Gram negative species on following agar:

MacConkey's medium
Eosin Methylene Blue agar
d) Prepare a Rapid Multiple Test System (API 20E System) on Gram negative organism

Exercise 4: Collecting and Gram staining of an environmental biofilm

a) Sample and Gram stain dental plaque from own teeth as follows

Prior to rinsing with mouthwash
Immediately after rinsing with mouthwash
20 minutes after rinsing with mouthwash
b) Compare samples of dental plaques:

Gram stain, cell morphology, cell arrangement of dominant organism
Relative cell densities

Exercise 5: Microbiological Analysis of Food

a) Calculate bacterial population of 'clean' and 'contaminated' samples of ground beef using Plate Count technique.
b) Isolate and identify Escherichia coli using:

Gram stain
Eosin Methylene Blue agar
Double strength lactose broth with Durham tube
c) Identify Enterococcus faecalis using:

Double strength Azide Dextrose broth
KF agar
BHI broth
Catalase test
d) Identify Staphylococcus aureus using:

Double strength TCS broth
Blood agar
Coagulase test
e) Determine if meat samples are considered to be safe for consumption.

Exercise 6: Microbial activity in milk and yogurt

a) Assess bacterial content of following milks:

UHT milk
Pasteurized milk
Pasteurized milk left overnight at $30^{\circ} \mathrm{C}$
Buttermilk
using:
Dye reduction assay
Methylene blue staining and microscopic examination
b) Assess bacterial population changes during yogurt fermentation;

Perform Gram stain and determine pH immediately after preparation and after 24 hours incubation

Exercise 7: Activity of a Microbial Consortium - Methanogenesis

a) Determine methane production in sewage sludge using:

Various incubation temperatures
Gas chromatography to assess \%age methane production

Exercise 8: Determination of Cellulase Activity

a) Preparation of cellulase enzyme from culture of Trichoderma viride
b) Spectrophotometric Assay of enzyme activity using Carboxymethyl cellulose as substrate and Dinitrosalicylic acid as indicator.

Exercise 9: Extracellular Enzymes of Erwinia carotovora

a) Inoculate whole potatoes with Erwinia carotovora and Escherichia coli
b) After one week prepare following plates from each potato:

Starch agar (determination of amylase)
Skim milk agar (determination of proteases)
Spirit Blue agar (determination of lipid hydrolysis)
Pectin medium (determination of pectinase)

Exercise 10: Antibacterial Agents

a) Assess the activity of various chemical agents and household products against common species of bacteria.
b) Assess the activity of various antibiotics against common species of bacteria using the Kirby Bauer Assay.

Exercise 11: Quorum Sensing

a) Plate Detection of Homo-serine Lactones using three strains of Agrobacterium tumefaciens:
A. tumefaciens NTL4 - used as HSL negative control
A. tumefaciens pTiC58 - contains Ti plasmid, produces HSL
A. tumefaciens pZLR4 - responds to HSL by producing β-galactosidase
b) Assess rate of HSL production in batch culture over 24 hrs . (Demonstration)

Exercise 12: Agrobacterium-mediated Plant Transformation

Assay of transgenic Arabidopsis seedling tissue for expression of the reporter gene (gusA) for β-glucuronidase cloned from Escherichia coli.
a) Extract β-glucuronidase from tissue and assess its activity using p-Nitrophenyl- β-Dglucurinide as substrate
b) Determine protein concentration of tissue homogenate using the Bradford Dye-binding Protein Assay.

