

DEPARTMENT SCIENCE

COURSE OUTLINE - FALL 2017

PC1240 (A2/B2): PARTICLES AND WAVES – 3 (3-0-3) UT 90 Hours for 15 Weeks

INSTRUCTOR: Dr. Greg Ballentine **PHONE:** 780-539-2008

OFFICE: C414 **E-MAIL:** gballentine@gprc.ab.ca

10:30 – 11:30 AM Monday to Friday

OFFICE HOURS: (or whenever else can be arranged – come check my office at any time)

CALENDAR DESCRIPTION: Algebra-based course primarily for students in life, environmental, and medical sciences. It guides the students through two distinct types of motions: motion of matter (particles) and wave motion. Vectors, forces, bodies in equilibrium, review of kinematics and basic dynamics; conservation of momentum and energy; circular motion; vibrations; elastic waves in matter; sound; wave optics; black body radiation, photons, de Broglie waves. Examples relevant in environmental, life, and medical sciences will be emphasized

PREREQUISITE(S)/COREQUISITE: Physics 20 or equivalent, Mathematics 30-1 or equivalent. Physics 30 is strongly recommended.

REQUIRED TEXT/RESOURCE MATERIALS: PHYSICS Walker 5th Edition, Physics 1240 Lab Manual

DELIVERY MODE(S): 3 hours of lecture (MW 8:30-9:50 J201) and 3 hours of lab (A2 R 14:30-17:20 B2 W 14:30-17:20 in J103)

COURSE OBJECTIVES: This course is designed to be a survey course as an introduction to university level physics. In this course, students will learn about classical physics including Newton's Laws, vectors, energy, momentum and rotational motion. Gravity and oscillatory motion will also be discussed. Sound and light waves will also be studied. The course concludes with a brief look at modern physics.

LEARNING OUTCOMES: Upon successful completion, a student is expected to have:

- Reasonable understanding of concepts of kinematics, vectors, Newton's Laws, energy, rotational motion, oscillatory motion, superposition of waves, sound and electromagnetic waves
- Experience with common mathematical and experimental tools, including problem solving for this course.

TRANSFERABILITY:

UA, UC, UL, AU, Augustana UA, CUC, GMU, KUC

*Warning: Although we strive to make the transferability information in this document up-to-date and accurate, the student has the final responsibility for ensuring the transferability of this course to Alberta Colleges and Universities. Please consult the Alberta Transfer Guide for more information. You may check to ensure the transferability of this course at Alberta Transfer Guide main page http://www.transferalberta.ca or, if you do not want to navigate through few links, at http://alis.alberta.ca/ps/tsp/ta/tbi/onlinesearch.html?SearchMode=S&step=2

** Grade of D or D+ may not be acceptable for transfer to other post-secondary institutions. **Students** are cautioned that it is their responsibility to contact the receiving institutions to ensure transferability

EVALUATIONS:

Assignments 10%

Labs 20% (Must pass Lab to pass course)

Midterm #1 15% (or 0%*) October 11th
Midterm #2 15% (or 0%*) November 6th

Final Exam 55% (or 40%*) Cumulative. Time and Location TBA by Registrar's Office

* The lowest midterm will be dropped and its weight will be added to the final exam if it improves your mark **Midterm Exams:** Students are allowed a formula sheet (handwritten 8.5 x 11 inch both sides), a calculator (any calculator WITHOUT communication features) and pens or pencils and eraser.

Final Exam: This exam is cumulative. Students are allowed the same items as for a midterm exam.

GRADING CRITERIA: (The following criteria may be changed to suite the particular course/instructor)

Please note that most universities will not accept your course for transfer credit **IF** your grade is **less** than C-.

Alpha	4-point	Percentage	Alpha	4-point	Percentage
Grade	Equivalent	Guidelines	Grade	Equivalent	Guidelines
A+	4.0	90-100	C+	2.3	67-69
A	4.0	85-89	С	2.0	63-66
A-	3.7	80-84	C-	1.7	60-62
B+	3.3	77-79	D+	1.3	55-59
В	3.0	73-76	D	1.0	50-54
B-	2.7	70-72	F	0.0	00-49

COURSE SCHEDULE/TENTATIVE TIMELINE:

Copyright © 2009, Grande Prairie Regional College and its licensors.

NOTE: The course schedule is on moodle and may be updated there if necessary. This schedule is preliminary but gives a good idea of which sections in the textbooks you should read to be caught up with the class lectures

Date	Topic	Sections in Walker				
Aug 30 th	Introduction	1-1,1-2,1-5				
Sept 6 th	Dimensional Analysis, Significant Figures	1-3,1-4,1-6,1-8				
Sept 6 th /7 th	Lab – Graphical Analysis					
Sept 11 th	Position, Velocity, Acceleration	1-7,2-1,2-2,2-3,2-4				
Sept 13 th	Kinematics Equations, Freefall	2-5,2-6,2-7				
Sept 13 th /14 th	Lab – Vector Addition					
Sept 18 th	Vectors	3-1,3-2,3-3,3-4,3-5				
Sept 20 th	Projectile Motion	4-1,4-2,4-3,4-4,4.5				
Sept 20 th /21 st	Lab – Acceleration of Gravity					
Sept 25 th	Newton's Laws, Weight, Friction	5-1,5-2,5-3,5-4,5-5,5-6,5-7				
Sept 27 th	Applying Newton's Laws	6-1,6-2,6-3,6-4,6-5				
Sept 27 th /28 th	Lab – Non-Uniform Motion					
Oct 2 nd	Work, Kinetic and Potential Energy	7-1,7-2,7-3				
Oct 4 th	Power, Applying Energy	7-4,8-1,8-2,8-3,8-4				
Oct 4 th /5 th	Problem Lab #1					
Oct 11 th	Midterm #1					
Oct 11 th /12 th	Lab – Atwood's Pulley					
Oct 16 th	Impulse, Momentum, Collisions	9-1,9-2,9-3,9-4,9-5,9-6,9-7				
Oct 18 th	Rotational Kinematics, Moment of Inertia	10-1,10-2,10-3,10-4,10-5,10-6				
Oct 18 th /19 th	Lab – Potential Energy and Kinetic Energy					
Oct 23 rd	Torque, Static Equilibrium	11-1,11-2,11-3,11-4,11-5				
Oct 25 th	Angular Momentum, Rolling Motion	11-6,11-7,11-8				
Oct 25 th /26 th	Lab-Collision of Ball					
Oct 30 th	Gravity, Gravitational Potential Energy	12-1,12-3,12-4,12-5				
Nov 1st	Simple Harmonic Motion, Damped + Driven 13-1,13-2,13-3,13-7,13-8					
Nov 1 st /2 nd	Lab – Problem Lab #2					
Nov 6 th	Midterm #2					
Nov 8 th	Mass on Spring, Pendulum	13-4,13-5,13-6				
Nov 8 th /9 th	Lab – Standing Waves on a String					
Nov 15 th	Waves	14-1,14-2,14-3				
Nov 15 th /16 th	Lab – Speed of Sound					

Nov 20th Sound Waves- Intensity and Standing Waves 14-4,14-5,14-7,14-8 Nov 22nd Light Interference 25-3,28-1,28-2,28-3

Nov 22nd/23rd Lab – Interference of Light

Nov 27th Diffraction 28-4,28-5,28-6

Nov 29th Blackbody Radiation, Photoelectric Effect 30-1,30-2,30-3,30-4

Nov 29th/30th Problem Lab #3

Dec 4th deBroglie, Heisenberg, Tunnelling 30-5,30-6,30-7

Dec 6th Conclusion

STUDENT RESPONSIBILITIES:

Refer to the College Policy on Student Rights and Responsibilities at https://www.gprc.ab.ca/about/administration/policies/fetch.php?ID=69

STATEMENT ON PLAGIARISM AND CHEATING:

Cheating and plagiarism will not be tolerated and there will be penalties. For a more precise definition of plagiarism and its consequences, refer to the Student Conduct section of the College Calendar at http://www.gprc.ab.ca/programs/calendar/ or the College Policy on Student Misconduct: Plagiarism and Cheating at https://www.gprc.ab.ca/about/administration/policies

^{**}Note: all Academic and Administrative policies are available on the same page.